Daniel Tenbrinck
Prof. Dr. Daniel Tenbrinck (Akad. Rat)
Prof. Dr. Daniel Tenbrinck, Akad. Rat
Team Assistance
Beate Kirchner
Sekretariat
Cauerstraße 11
91058 Erlangen
Cauerstraße 11
91058 Erlangen
- Phone number: +49 9131 85-67161
- Email: beate.kirchner@fau.de
- Website: https://www.datascience.nat.fau.eu/person/beate-kirchner/
Lebenslauf
- verheiratet, 4 Kinder
- Grundwehrdienst bei der Luftwaffe, Budel (Niederlande), 2004-2005.
- Studium in Informatik mit Nebenfach Mathematik an der Westfälischen Wilhelms-Universität (WWU) Münster, 2005-2009, Diplom 2009.
- Doktor der Naturwissenschaften in Informatik an der WWU Münster, 2013.
- Wissenschaftlicher Mitarbeiter und Postdoc im SFB 656 “Molekulare Bildgebung” an der WWU Münster, 2009-2013.
- Postdoc an der École Nationale Ecole Nationale Supérieure d’Ingénieurs de Caen (ENSICAEN), Frankreich, 2014.
- Postdoc am Institut für Angewandte Mathematik, Prof. Burger, WWU Münster, 2014-2018.
- Postdoc am Lehrstuhl für Angewandte Mathematik, Prof. Burger, FAU Erlangen-Nürnberg, 2018-2019.
- Akademischer Rat am Lehrstuhl für Angewandte Mathematik, Prof. Burger, FAU Erlangen-Nürnberg, seit 2019.
- Vertretungsprofessur (W3), Department of Data Science, FAU Erlangen-Nürnberg, seit 2023.
Publikationen
2024
The Infinity Laplacian Eigenvalue Problem: Reformulation and a Numerical Scheme
In: Journal of Scientific Computing 98 (2024), Article No.: 40
ISSN: 0885-7474
DOI: 10.1007/s10915-023-02425-w
URL: https://link.springer.com/article/10.1007/s10915-023-02425-w
, , :
Hypergraph p-Laplacians and Scale Spaces
In: Journal of Mathematical Imaging and Vision (2024)
ISSN: 0924-9907
DOI: 10.1007/s10851-024-01183-0
URL: https://link.springer.com/article/10.1007/s10851-024-01183-0
, , , :
2023
Hypergraph p-Laplacians, Scale Spaces, and Information Flow in Networks
International Conference on Scale Space and Variational Methods in Computer Vision (Santa Margherita di Pula, 21. May 2023 - 25. May 2023)
In: SSVM 2023: Scale Space and Variational Methods in Computer Vision 2023
DOI: 10.1007/978-3-031-31975-4_52
, , :
Resolution-Invariant Image Classification Based on Fourier Neural Operators
International Conference on Scale Space and Variational Methods in Computer Vision (Santa Margherita di Pula, 23. May 2023 - 25. May 2023)
In: Scale Space and Variational Methods in Computer Vision 2023
DOI: 10.1007/978-3-031-31975-4_18
, , , :
2022
A Bregman Learning Framework for Sparse Neural Networks
In: Journal of Machine Learning Research (2022)
ISSN: 1532-4435
Open Access: https://www.jmlr.org/papers/v23/21-0545.html
, , , :
2021
Fenchel Duality Theory and a Primal-Dual Algorithm on Riemannian Manifolds
In: Foundations of Computational Mathematics (2021)
ISSN: 1615-3375
DOI: 10.1007/s10208-020-09486-5
, , , , :
CLIP: Cheap Lipschitz Training of Neural Networks
International Conference on Scale Space and Variational Methods in Computer Vision
In: Abderrahim Elmoataz, Jalal Fadili, Yvain Quéau, Julien Rabin, Loïc Simon (ed.): SSVM 2021: Scale Space and Variational Methods in Computer Vision, Cham: 2021
DOI: 10.1007/978-3-030-75549-2_25
URL: https://arxiv.org/abs/2103.12531
, , , , :
Identifying untrustworthy predictions in neural networks by geometric gradient analysis
Conference on Uncertainty in Artificial Intelligence (UAI) (Online, 27. July 2021 - 30. July 2021)
URL: https://arxiv.org/abs/2102.12196
, , , , , , , :
Dynamically Sampled Nonlocal Gradients for Stronger Adversarial Attacks
International Joint Conference on Neural Networks (IJCNN) (Online, 18. July 2021 - 22. July 2021)
DOI: 10.1109/ijcnn52387.2021.9534190
, , , , , , :
2020
Using migrating cells as probes to illuminate features in live embryonic tissues
In: Science Advances 6 (2020)
ISSN: 2375-2548
DOI: 10.1126/sciadv.abc5546
, , , , , , , , , , , , , , , , , , , , :
2019
Computing Nonlinear Eigenfunctions via Gradient Flow Extinction
SSVM 2019 (Hofgeismar, 30. June 2019 - 4. July 2019)
DOI: 10.1007/978-3-030-22368-7_23
URL: https://arxiv.org/abs/1902.10414
, , :
2018
A Graph Framework for Manifold-valued Data
In: Siam Journal on Imaging Sciences 11 (2018)
ISSN: 1936-4954
DOI: 10.1137/17M1118567
, :
2017
Nonlocal Inpainting of Manifold-Valued Data on Finite Weighted Graphs
International Conference on Geometric Science of Information (Mines ParisTech, Paris, 7. November 2017 - 9. November 2017)
URL: https://arxiv.org/abs/1704.06424
, :
2016
Image segmentation with physical noise models
In: Ayman El-Baz, Xiaoyi Jiang, Jasjit S. Suri (ed.): Biomedical Image Segmentation Advances and Trends, CRC Press, 2016, p. 461-484
, :
2015
On the p-Laplacian and ∞-Laplacian on Graphs with Applications in Image and Data Processing
In: Siam Journal on Imaging Sciences 8 (2015), p. 2412-2451
ISSN: 1936-4954
DOI: 10.1137/15M1022793
, , :
Image Segmentation with Arbitrary Noise Models by Solving Minimal Surface Problems
In: Pattern Recognition 48 (2015), p. 3293-3309
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2015.01.006
, :
Solving Minimal Surface Problems on Surfaces and Point Clouds
International Conference on Scale Space and Variational Methods in Computer Vision (Bordeaux)
, , :
2014
Mathematical methods in biomedical imaging
In: GAMM-Mitteilungen 37 (2014), p. 154-183
ISSN: 0936-7195
DOI: 10.1002/gamm.201410008
, , :
Software Phantom with Realistic Speckle Modeling for Validation of Image Analysis Methods in Echocardiography
SPIE Medical Imaging 2014: Ultrasonic Imaging and Tomography
, , , :
Registration of noisy images via maximum a-posteriori estimation
In: Lecture Notes in Computer Science 8545 LNCS (2014), p. 231-240
ISSN: 0302-9743
DOI: 10.1007/978-3-319-08554-8_24
, , , :
Automatic Classification of Left Ventricular Wall Segments in Small Animal Ultrasound Imaging
In: Computer Methods and Programs in Biomedicine 117 (2014), p. 2-12
ISSN: 0169-2607
DOI: 10.1016/j.cmpb.2014.06.015
, , , :
2013
Biomedical Imaging: A Computer Vision Perspective
International Conference on Computer Analysis of Images and Patterns (York, 27. August 2013 - 29. August 2013)
, , , , , , :
A Variational Framework for Region-Based Segmentation Incorporating Physical Noise Models
In: Journal of Mathematical Imaging and Vision 47 (2013), p. 179-209
ISSN: 0924-9907
DOI: 10.1007/s10851-013-0419-6
, , , :
Variational Methods for Medical Ultrasound Imaging (Dissertation, 2013)
URL: https://www.datascience.nat.fau.eu/files/2023/11/dissertation_tenbrinck.pdf
:
Discriminant Analysis Based Level Set Segmentation for Ultrasound Imaging
International Conference on Computer Analysis of Images and Patterns (York, 27. August 2013 - 29. August 2013)
, :
Histogram-based Optical Flow for Motion Estimation in Ultrasound Imaging
In: Journal of Mathematical Imaging and Vision 47 (2013), p. 138-150
ISSN: 0924-9907
DOI: 10.1007/s10851-012-0398-z
, , , , :
Regional Classification of Left Ventricular Wall in Small Animal Ultrasound Imaging
International Conference on Biomedical Informatics and Technology
, , , :
2012
Impact of physical noise modeling on image segmentation in echocardiography
3rd Eurographics Workshop on VisualComputing in Biology and Medicine, EG VCBM 2012 (Norrkoping, swe)
DOI: 10.2312/VCBM/VCBM12/033-040
, , , , , , , :
2011
- Schmid S, Tenbrinck D, Jiang X, Schäfers K, Tiemann K, Stypmann J:
Histogram-Based Optical Flow for Functional Imaging in Echocardiography
International Conference on Computer Analysis of Images and Patterns (Sevilla, 29. August 2011 - 31. August 2011)
Lehrveranstaltungen an der FAU
WS 2024/2025 |
|
SS 2024 |
|
WS 2023/2024 |
|
SS 2023 |
|
WS 2022/2023 |
|
SS 2022 |
|
WS 2021/2022 |
|
SS 2021 |
|
WS 2020/2021 |
|
SS 2020 |
|
WS 2019/2020 |
|
SS 2019 |
|
WS 2018/2019 |
|
Ausgewählte Skripten und Vorträge
- Einführung in die Numerik (Stand: WS 2022/2023)
- Diskretisierung und numerische Optimierung (Stand: SS 2023)
- Mathematik für Data Science 2 / Physikstudierende B (Stand: SS 2021)
- Mathematik für Physikstudierende C (Stand: WS 2021/2022)
- Mathematical Data Science 1 (heute: Mathematics of Learning) -> Bitte per Email an daniel.tenbrinck@fau.de persönlich anfragen!
- Cryptographic Hash Functions and MACs (03.05.2024)
- Stack-based Buffer Overflows (29.04.2023)
- Variational Graph Methods for Efficient Point Cloud Sparsification (20.06.2022)
- Discrete Graph Operators for Manifold-Valued Data (04.11.2020)
- Variational Methods and PDEs on Graphs with Applications in Data Processing and Machine Learning (26.04.2018)
Eingeworbene Drittmittel und Auszeichnungen
Oktober 2024 | BMBF Verbundforschungsprojekt zur Förderlinie “Flexible, resiliente und effiziente Machine-Learning-Modelle” 01IS24072A-E “COMFORT – Komprimierungsmethoden für Robustheit und Transfer”
Fördersumme: 1.987.916€ (FAU-Anteil: 294.264€) |
November 2023 | Bayrisches Verbundforschungsprogramm Förderlinie Digitalisierung DIK0532/02 “Biosamp – Erweiterung und Auswertung von Transomics-Datensätzen mit künstlich erzeugten Daten mittels KI unter Einbezug der Biologie”
Fördersumme: 915.043€ (FAU-Anteil: 234.736€) |
Juli 2023 | Innovationsfonds Lehre, FAU Erlangen-Nürnberg.
Fördersumme: 7.832€ |
Oktober 2020 | Fördermittel zur Durchführung einer Data Science Summer School, FAU Erlangen-Nürnberg.
Fördersumme: 50.000€ |
Juli 2019 | Excellent Talent Initiative (ETI) Förderung 2019/2 Nat 04 “Efficient Processing and Analysis of Big Data using Graph Methods“, FAU Erlangen-Nürnberg.
Fördersumme: 9.003€ |
August 2017 | Flexible Funds Förderung für Project FF-2017-14 “Characterization of Cell-Environment Interactions affecting Single-Cell Motility in vivo“ innerhalb des Exzellenzclusters Cells in Motion“, WWU Münster.
Fördersumme: 113.892€ |
Juli 2017 | H2020 Marie-Sklodowska-Curie Research and Innovation Staff Exchange (RISE) Förderung für das EU Forschungsprojekt 777826 “Nonlocal Methods for Arbitrary Data Sources (NoMADS)“.
Fördersumme: 1.111.500€ |
Juli 2016 | Pilot Projects funding for project PP-2016-10 “Identification of Features in the Environment influencing Single-Cell Migration in vivo“ innerhab des Exzellenzclusters Cells in Motion“, WWU Münster.
Fördersumme: 19.224€ |
Juni 2015 | Pauschalmittel Föderung für Projekt PM 24 “Quantitative Susceptibility Mapping“ innerhalb des Sonderforschungsbereichs 656 Molekulare Bildgebung (MoBil), WWU Münster.
Fördersumme: 9.211€ |
- Lehrpreis 2022 der Naturwissenschaftlichen Fakultät, FAU Erlangen-Nürnberg
- Leistungsprämie für herausragende Leistungen im Jahr 2021, FAU Erlangen-Nürnberg